QUES 01:-

. Two moving coil meters, M₁ and M₂ have the following particulars:

$$R_1 = 10\Omega$$
, $N_1 = 30$,

$$A_1 = 3.6 \times 10^{-3} \,\mathrm{m}^2$$
, $B_1 = 0.25 \,T$

$$R_2 = 14 \Omega$$
, $N_2 = 42$,

$$A_2 = 1.8 \times 10^{-3} \text{ m}^2$$
, $B_2 = 0.50 T$

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage sensitivity of M_2 and M_1 .

Ans. For moving coil meter M₁:

Resistance, $R_1 = 10\Omega$

Number of turns, $N_1 = 30$,

Area of cross-section, $A_1 = 3.6 \times 10^{-3} \, m^2$

Magnetic field strength, $B_1 = 0.25 T$

Spring constant $K_1 = K$

For moving coil meter M2:

Resistance, $R_2 = 14 \Omega$

Number of turns, $N_2 = 42$,

Area of cross-section, $A_2 = 1.8 \times 10^{-3} \, m^2$

Magnetic field strength, $B_2 = 0.50 T$

Spring constant, $K_2 = K$

(a) Current sensitivity of M_1 is given as:

$$I_{zi} = \frac{N_1 B_1 A_1}{K_1}$$

And, current sensitivity of M_2 is given as:

$$I_{si} = \frac{N_2 B_2 A_2}{K_2}$$

:. Ratio
$$\frac{I_{s2}}{I_{s1}} = \frac{N_2 B_2 A_2 K_1}{K_2 N_1 B_1 A_1}$$

$$= \frac{42 \times 0.5 \times 1.8 \times 10^{-3} \times K}{K \times 30 \times 0.25 \times 3.6 \times 10^{-3}} = 1.4$$

Hence, the ratio of current sensitivity of M_2 to M_1 is 1.4.

(b) Voltage sensitivity for M_2 is given as:

$$V_{z2} = \frac{N_2 B_2 A_2}{K_2 R_2}$$

And, voltage sensitivity for M_1 is given as: